
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 329 (2010) 848–865
0022-46

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jsvi
Non-modal dynamics before flow-induced instability in
fluid–structure interactions
G. Coppola a,�, L. de Luca b

a DETEC, Universit�a degli studi di Napoli ‘‘Federico II’’, Italy
b DIAS, Universit �a degli studi di Napoli ‘‘Federico II’’, Italy
a r t i c l e i n f o

Article history:

Received 23 December 2008

Received in revised form

7 October 2009

Accepted 7 October 2009
Handling Editor: C.L. Morfey
problem tractable for the rather wide range of cases, simple pressure models are
Available online 30 October 2009
0X/$ - see front matter & 2009 Elsevier Ltd.

016/j.jsv.2009.10.010

responding author.

ail address: gcoppola@unina.it (G. Coppola).
a b s t r a c t

A theoretical investigation of the subcritical dynamics of typical fluid–structure

interactions is carried out by applying the linear non-modal operators theory combined

with direct numerical simulations. The cases of thin panel exposed to subsonic and

supersonic fluid flows and pipe conveying a fluid are considered. In order to make the

employed, where the relevant instability is essentially of modal-coalescence type.

Transient energy amplifications, here termed optimal and global, are found, which

exhibit low-frequency oscillations corresponding to the continuous extraction/release of

energy from/to the fluid. The low frequency is always related to the spacing between the

imaginary parts of the coupling eigenvalues, which represent essentially the non-

normal part of the spectrum. This suggests that the periodic transfers of energy along

the route to the instability can be predicted by a simple model of damped forced

vibrations. Although the major findings are obtained with crude pressure models, the

authors’ opinion is that most of the effects discussed in the paper should survive to the

use of flow dynamics modeling based on full Navier–Stokes equations, at least at high

Reynolds number flows.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Flutter and divergence instabilities of a thin streamlined and deformable body interacting with a fluid current are a
physical phenomenon commonly observed in a variety of science and engineering situations. In spite of the remarkable
bulk of modern papers, these instabilities and the related flow-induced flapping dynamics do not seem exhaustively
studied under all their aspects. It is well known that under certain circumstances the system can lose its stability, which
occurs in both supersonic and subsonic flows. Linear analysis shows that the instability is associated to a variety of
spectrum morphologies, depending on how eigenvalues cross the stability margin in the complex frequency-plane (for a
recent comprehensive review see for example Paı̈doussis [1,2]).

For plates in axial flow the basic control parameters usually employed are the density ratio m ¼ r1L=rsh, which
characterizes the added mass effect, r1 and rs being the fluid density and that of the panel (of length L and thickness h),
respectively, and the velocity ratio V of the fluid velocity V1 to the velocity of the so-called bending waves VB. Typically, for
a fixed m the instability is seen to emerge with increasing the velocity ratio, and similar occurrences are encountered in
other fluid–structure interactions such as the fluid-conveying pipe model.
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For thin plates in axial flow the theories and the applications developed in the literature employ a variety of analytical
models and numerical tools. Models have mainly been developed by considering linear beam theory for the structure and
potential flow for the external aerodynamics. In subsonic flow one encounters various approximations, ranging from
Theodorsen-like models [3–6] to unsteady vortex models [7–9]. For supersonic flow, the external flow is still usually
treated as potential, with occasional corrections arising from the boundary layer influence. Early reviews of the subject are
due to Dowell et al. [10] and Dugundji [11] and a special mention of the monograph of Dowell [12] is deserved. This list of
papers is largely incomplete because the literature is quite huge and it is still growing. The fluid-conveying pipe problem is
a huge topic too, mainly because of its prototypical character [13].

Generally speaking, the previous papers deal with both the conditions leading to the instability and the post-critical
behavior. Some unresolved issues still remain, the most notably one being the subcritical bifurcation of soft panels in
subsonic flow, with the formation of a hysteresis loop [14,15,9]. Among more recent contributions, Abrahams and Wickham
[16] and Pitman and Lucey [17] analyzed the effect of the structural damping and showed that it changes remarkably
the instability characteristics. The former authors studied the damping influence on the absolute/convective nature of the
instability, the latter showed that for damped plates the divergence merges into flutter instability with increasing the
dimensionless velocity parameter. Howell et al. [18] carried out direct numerical simulations of the behavior of a
cantilevered-free plate and found time oscillations of the plate energy by monitoring crucial energy transfers between fluid
and structure. These last findings are reminiscent of a similar oscillatory behavior which will be discussed in the central
body of the present paper. Nonetheless, they are of different nature, the major reason being that the energy oscillations of
Howell et al. [18] are linked to the classical local flapping dynamics, whereas present results refer to global oscillations,
where the term global here means that the fluctuations concern the entire structure.

The present contribution starts from a quite different perspective, inspired by the not yet investigated non-normal
character of the typical partial differential equation of motion. It is widely recognized that in the field of the hydrodynamic
stability of shear flows, non-normal features of the operator governing the linear evolution of disturbances strongly
modified the findings based on the eigenvalue analysis. The present paper aims to address the nature of the subcritical
(i.e. before the occurrence of instability) linear non-modal dynamics of some fluid–structure interactions, here seen as
prototypical, representing a novelty in this subject. Within this context a relatively recent paper of Schmid and de Langre
[19] is our starting point. It analyzes the occurrence of global transient growth of energy before the onset of couple-mode
flutter by restricting the analysis to simple two degrees-of-freedom finite-dimensional models derived by classical
problems. They were able to show that the energy of such systems may grow by a factor of more than 10 before the
threshold of flutter is crossed, and some later experimental results on the stability of rigid wing configurations seem to
corroborate such findings [20]. However, the survival of such effects in the continuum limit and their extension to more
realistic models of deformable structures have not been investigated. This lack is the motivating reason of the present
paper.

With reference to typical forms of the equation of motion governing the dynamics of thin elastic panels and fluid-
conveying pipes, it will be shown that subcritical global amplifications of energy occur and quantitative results will be
shown. Furthermore, the transient energy growth of disturbances exhibits significant time-periodic oscillations. The period
of such oscillations is not related to the frequency of flapping at critical conditions, as in the paper of Howell et al. [18],
whilst it is always related to the morphology of the spectrum (as already showed for convection-driven models by Coppola
and de Luca [21]). More specifically, we will see that the global oscillatory behavior is of low-frequency, as opposed to the
more standard local one which is of high-frequency. The non-modal analysis will be combined with a numerical simulation
of the dynamic behavior of the system. It is worth pointing out that while the direct numerical simulation solves an initial-
value problem, the non-modal analysis yields the maximum energy amplification over all possible initial conditions, in fact
its output is usually termed optimal. Readers have to be made fully aware that, in order to make the problem tractable in a
wide variety of cases, rather crude closed-form pressure models are considered. These models generally lead to modal-
coalescence instability. In the opinion of the authors the core of the present results should survive in more complex cases of
higher-order single-mode flutter and numerical modeling of the flow dynamics based on full Navier–Stokes equations is
strongly recommended for advanced calculations. This issue will be briefly discussed in the conclusions.

The paper is organized as follows. In Section 2 the basic equation is presented and the connections between the present
model and the finite-dimensional model of Schmid and de Langre [19] are highlighted. In Section 3 the fundamentals of
non-modal analysis are recalled and the numerical procedure employed is described. Section 4 is devoted to the results,
detailed for the various situations and for the different pressure models employed. In Section 5 some conclusions are finally
drawn.

2. Modeling

The model equation used here to study the behavior of a streamlined body interacting with a fluid flow is

m
@2Y

@t2
¼ �B

@4Y

@X4
� DP � D

@Y

@t
(1)

where inertia, bending elasticity, aerodynamic pressure and structural damping are included. X and Y are the axial spatial
coordinate and the transverse deflection, respectively, and t is time. For the case of a plate in axial flow m is equal to rsh,
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while for a pipe conveying fluid it is the mass per unit length of the pipe. B is the flexural rigidity and DP is the forcing
pressure arising from the interaction with the fluid, namely the pressure difference between upper and lower surfaces for
the plate and the pressure variation related to the fluid acceleration for the pipe. D is the damping coefficient. Occasionally
some other terms may be included, such as the shear flow induced tension and the effects of an elastic foundation.

Eq. (1) may be conveniently recast in a non-dimensional form. In the case of plate we define x ¼ X=L, y ¼ Y=L, t ¼ t=tr

with tr ¼ L2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=ðrshÞ

p
, V ¼ V1=VB with VB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=ðrshÞ

p
=L, p ¼ DP=ðr1V2

1Þ, and d ¼ L2D=
ffiffiffiffiffiffiffiffiffiffiffi
rshB

p
. These definitions lead to

the following equation, where the two dimensionless parameters m and V have been already defined:

@2y

@t2
¼ �

@4y

@x4
� mV2p� d

@y

@t
(2)

The above model agrees with most models presented in a consistent body of literature. In the case of pipe, a slightly
different choice of the characteristic quantities is usually employed. Following Paı̈doussis [1,13] the characteristic time
is tr ¼ L2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=ðM þmÞ

p
, where M is the fluid mass per unit length. The corresponding dimensionless groups are:

b ¼ M=ðM þmÞ and u ¼ UL
ffiffiffiffiffiffiffiffiffiffi
M=B

p
, where U is the (constant) velocity of the fluid inside the pipe. The complete

dimensionless form of the equation of motion is reported in Section 4.5 after deriving a suitable expression of the pressure
term DP.

The boundary conditions for the equation of motion explored in this paper refer to clamped–clamped, pinned–pinned
and clamped–free configurations. They read

yð0Þ ¼
@y

@x
ð0Þ ¼ 0 and yð1Þ ¼

@y

@x
ð1Þ ¼ 0; C2C (3)

yð0Þ ¼
@2y

@x2
ð0Þ ¼ 0 and yð1Þ ¼

@2y

@x2
ð1Þ ¼ 0; P2P (4)

yð0Þ ¼
@y

@x
ð0Þ ¼ 0 and

@2y

@x2
ð1Þ ¼

@3y

@x3
ð1Þ ¼ 0; C2F (5)

Before performing a detailed analysis of the non-normal characteristics of such a model problem, it has to be stressed
that Eq. (2) cannot be considered as the continuous counterpart of the two-degrees-of-freedom model studied by Schmid
and de Langre [19]. In fact, the present authors extended that model to a generic number N of degrees-of-freedom, N42,
and they found (this argument is physically deducible and will not be formally developed in the present paper) that it is not
consistent for N-1 with the continuous model of the dynamics of an inextensible two-dimensional plate, namely Eq. (1),
without structural damping. On the contrary, consistency is achieved with a model of N lumped masses whose equations of
motion are derived by means of the method of the influence coefficients, which are determined through the flexural
deflection of the (massless) panel divided into N þ 1 elements. In the case of two-degrees-of-freedom, when the pressure
field is of the steady supersonic kind and given by DP ¼ ðr1V2

1=M1ÞðdY=dXÞ [12], for the pinned–pinned case the influence
coefficients model writes

a11 €y1 þ a12 €y2 þ 2 � 33y1 ¼ �2lða11y1 � a12y2Þ

a21 €y1 þ a22 €y2 þ 2 � 33y2 ¼ �2lða21y2 � a22y1Þ (6)

where l ¼ r1V2
1=ð2M1kÞ is the coupling parameter formally identical to the definition given by Dowell et al. [12], M1 is

the flow Mach number and the spring constant k here is substituted by B=L3. The coefficients of the influence matrix are
a11 ¼ a22 ¼

4
9 and a12 ¼ a21 ¼

7
18. Double dots stand for the second derivative of the relevant quantities with respect to time.

However, the mathematical structure of Eqs. (6) is equivalent to that proposed by Dowell et al. [12] (on which Schmid
and de Langre [19] carried out their non-normality analysis) and mimics the dynamics of two coupled oscillators:

€q1 þO2
1q1 ¼ caq2

€q2 þO2
2q2 ¼ �aq1 (7)

where q1 and q2 are the generalized coordinates q1 ¼ y1 þ y2 and q2 ¼ y1 � y2, a ¼ 2l is the coupling parameter, O1 and O2

are the frequencies of the free oscillators, c is an additional parameter. Eqs. (6) may be easily transformed to the form (7)
with O1 ¼ 8:05, O2 ¼ 31:18, c ¼ 1. It should be noted that for pinned–pinned end conditions the two exact lowest natural
frequencies are 9.87 and 39.48. A better approximation is of course attained by increasing the number of masses. Schmid
and de Langre [19] showed that the dynamics of two coupled oscillators is non-modal in subcritical conditions, i.e. when

ao
O2

1 �O2
2

2
ffiffiffi
c
p

Thus, we postulate the existence of optimal transient growths of energy for the continuous model starting from the
consideration that the same non-normal properties are exhibited by the consistent finite-dimensional model.
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3. Numerical treatment

3.1. Spectral analysis

By introducing the variables transformation (subscript denotes differentiation):

f ¼ y; g ¼ yt

Eq. (2) can be recast in the following form:

ft ¼ g

gt ¼ �fxxxx � Pðf ; gÞ � dg

(
(8)

where P is a linear operator expressing the pressure action in terms of the displacement variable and of its time derivative.
The assumption of exponential time dependence for the variables f and g: f ¼ ~f ðxÞeot , g ¼ ~gðxÞeot leads to an eigenvalue
problem which can be expressed in matrix form as follows:

(9)

where O, I , and D4 denote the null, identity and fourth-order spatial derivative operators, respectively, A and B are the
operators in which P decomposes, and each couple of functions ð~f ; ~gÞT satisfying (9) is an eigenfunction of the problem
associated to the eigenvalue o. The eigenvalue problem (9) is posed on the normalized domain [0, 1]. The four boundary
conditions required are given by one of the sets:

~f ð0Þ ¼ ~f ð1Þ ¼ ~f xð0Þ ¼
~f xð1Þ ¼ 0

~f ð0Þ ¼ ~f ð1Þ ¼ ~f xxð0Þ ¼
~f xxð1Þ ¼ 0

~f ð0Þ ¼ ~f xð0Þ ¼
~f xxð1Þ ¼

~f xxxð1Þ ¼ 0

respectively, for pinned–pinned, clamped–clamped and clamped–free configurations. The same conditions of course hold
for the velocity eigenfunction ~g .

The eigenvalue problem (9) has been solved by adopting a Chebyschev collocation spectral method, which is particularly
suited for eigenvalue problems [22,23]. In order to perform the discretization, the integration domain [0, 1] is firstly
mapped to the Chebyshev domain ½�1;1� by means of a simple linear transformation. The eigenfunctions are then
expanded in a series of N þ 1 Chebyshev polynomials and introduced into Eq. (9), and the condition of null residual is
imposed at the Chebyshev–Lobatto points. This procedure leads to a discretized eigenvalue problem of order 2ðN þ 1Þ
which is solved by means of a global eigenvalue method. In order to discard the spurious and non-physically relevant
eigenvalues produced by this technique, an individual convergence check for each eigenvalue is needed. The computations
are performed by taking advantage of the dmsuite package of Weideman and Reddy [24]. Boundary conditions are
implemented by replacing rows, following the technique illustrated in that paper. Numerical linear algebra computations
are performed in matlab.

The numerical simulations shown below have been performed by using the same spatial discretization employed in the
spectral analysis and an implicit Euler backward formula for temporal discretization. A satisfying accuracy is achieved with
maximum N values of order 100.

3.2. Non-modal analysis

It has been widely recognized that when an operator is non-normal (i.e. when the eigenfunction basis is not orthogonal)
inferring the stability of the system by employing normal modes alone may be misleading. In non-normal systems the
components of the solution to the governing equation in the eigenfunctions basis can be greater than the norm of solution.
Even though in an asymptotically stable system all the exponential terms decay, for moderate time scales the large
components, which cancel at t ¼ 0, survive because the initial cancelation generally does not occur. Therefore,
asymptotically stable systems can exhibit solutions whose norm experiences high amplifications (larger than its initial
value) on a short time scale and non-linearities can be triggered, which eventually make the system unstable. The non-
modal theory is not used here in order to try to infer conclusions on the presence of subcritical instabilities, they should
exist. On the contrary, we wish to emphasize its major effects on the subcritical dynamics, and to describe some important
related physical mechanisms.

In the following we will quickly present some standard tools for the analysis of non-normal operators governing initial
value problems. For a more comprehensive review the reader is referred to Schmid and Henningson [25] and Trefethen and
Embree [26].
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The initial-boundary value problem under consideration can be recast in the form of a linear evolution process on its
underlying Hilbert space. To this end the system (8) is rewrited conveniently as

jt ¼ Lj (10)

where the vector function j ¼ ðf ; gÞ satisfies the prescribed boundary conditions and L is the operator within round
brackets of Eq. (9). In order to measure the energy of the plate, we define at first the scalar product:

ðj1;j2ÞE ¼

Z 1

0
ðf �2xx f1xx þ g�2g1Þdx

where � denotes complex conjugate quantity and j1 and j2 are any two elements of the relevant Hilbert space. The
squared norm of a solution accordingly yields the structure disturbance energy (we are not including the energy associated
to disturbances in the fluid):

Etot ¼
1

2
JjJ2

E ¼
1

2

Z 1

0
ðf 2

xx þ g2Þdx ¼
1

2

Z 1

0
ðy2

xx þ y2
t Þdx (11)

where the first and second terms in the integrals refer, respectively, to the potential and kinetic energy contributions.
An energy balance yields the temporal variation of the energy norm:

dEtot

dt
¼ �

Z 1

0
pyt dx� d

Z 1

0
y2

t dx (12)

where the two right-hand side terms represent the work per unit time performed by the fluid pressure (i.e. the energy
exchange rate between fluid and structure Qe ¼ �

R 1
0 pyt dx) and the energy dissipation rate due to the structural damping

within the system, respectively. It is worth noting that the rate of work is not defined in signum (as opposed to the
corresponding damping term), hence a growth in energy can occur even for asymptotically stable and damped systems. In
order to collect into a single function the effects of such exchanges of energy between fluid and structure, regardless of the
initial condition, it is convenient to define a growth function GðtÞ as

GðtÞ ¼ sup
jðx;0Þa0

Jjðx; tÞJ2
E

Jjðx;0ÞJ2
E

¼ JeLtJ2
E

For each current time t, it represents the greatest possible amplification in energy of an initial perturbation and
it is hence the envelope of the energy evolution of all initial conditions with unit norm. The initial condition which attains
the maximum gain is usually termed optimal perturbation. A procedure to calculate GðtÞ is described by Reddy and
Henningson [27].

4. Results

4.1. Supersonic panel flutter

Let us first consider the case of a panel subjected to a supersonic pressure field. Following Dowell [12], for high
supersonic Mach numbers ðM141:7Þ the aerodynamic pressure can be described with the ‘‘piston theory’’ approximation:

DP ¼
r1V2

1

M1

@Y

@X
þ

1

V1

@Y

@t

� �

After reduction to dimensionless form and substitution into Eq. (2) one gets

@2y

@t2
¼ �

@4y

@x4
�
mV2

M1

@y

@x
�
mV

M1

@y

@t

where no structural damping is taken into account. Following various authors it is convenient to introduce the parameter
l2
¼ mV2 so as to rewrite

@2y

@t2
¼ �

@4y

@x4
� l2 @y

@x
� l

ffiffiffiffi
m
p @y

@t
(13)

where for the sake of simplicity we set M1 ¼ 1. For any actual Mach number the effective control parameters should be
scaled as leff ¼ l

ffiffiffiffiffiffiffiffi
M1
p

and meff ¼ mM1.
At higher Mach numbers, under the assumption of low frequency conditions, the unsteady term (the so-called

aerodynamic damping) can be neglected and then the pressure term becomes proportional to the local slope of the panel.
It is worth noting that in this simplified case the only control parameter is l and Eq. (13) becomes exactly the continuous
counterpart of system (6), that is to say of Eqs. (7) with c ¼ 1. The boundary conditions here analyzed are of pinned–pinned
type (Eqs. (4)).

The dynamics of the morphology of the spectrum as the parameter l is increased from the null value is well
documented in the literature [11,12]: in absence of damping, starting from the in vacuo situation, for relatively small values
of l the spectrum lies on the imaginary axis; as l increases the first two eigenvalues (the ones with the smallest
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pinned–pinned case.

G. Coppola, L. de Luca / Journal of Sound and Vibration 329 (2010) 848–865 853
frequencies) move toward each other and when it finally equals a certain critical value lcr (here lcrC18:53), they collide
and subsequently split, moving in opposite directions in the stable and unstable regions of the complex plane, giving rise to
the coupled-mode flutter instability. Fig. 1 depicts the relevant part of the spectrum for three values of the parameter
l2=l2

cr. Imaginary parts of the first four eigenfunctions (displacement variable) are reported in Fig. 2. These plots show that
while the first two eigenfunctions lose their symmetry as the coupling parameter increases, approaching the same shape at
the critical value, the other eigenfunctions are only slightly affected by the coupling parameter. Note that the critical non-
dimensional flutter frequency is Imðo1Þ ¼ Imðo2Þ ¼ 32:43. It is also interesting to observe that the third eigenvalue o3 is
practically unaffected by the pressure forcing, resulting Imðo3Þ ¼788:83 in the absence of coupling and Imðo3Þ ¼788:26
at critical conditions.

Hence, in subcritical conditions the first two eigenmodes become progressively far from orthogonal as the forcing
parameter increases, until they coincide. This implies that a generic disturbance having a non-null projection on the
subspace spanned by these two modes can experience a transient growth in subcritical conditions. These arguments could
be made more quantitative by the use of some other tools not presented here (namely pseudospectra and numerical range),
however, they are directly confirmed by the time trend of the growth function depicted in Fig. 3, where optimal growths of
energy up to values of thousands are evident.

A major feature of the growth function GðtÞ is its oscillatory behavior which is not linked either to the flutter frequency
or to one of the two frequencies moving in subcritical conditions. The period of the oscillations is growing with l,
approaching infinity as the critical conditions are reached, no damping effect being considered. According to a previous
result of Coppola and de Luca [21], this period is strictly linked to the spacing Do between the imaginary parts of the first
two eigenvalues, T ¼ 2p=Do. From the physical viewpoint, as will become clearer from the numerical simulations shown
hereafter, the plate is able to extract/release energy from/to the flow in a periodic fashion, with a frequency smaller than
the critical flapping frequency. This finding substantiates the picture that the route to panel instability is represented, for
the present case under examination, by an oscillatory low frequency transfer of energy having period and amplitude
progressively increasing as the critical condition is approached. The low-frequency oscillations have been termed global in
the introduction section because they refer to the entire structure as a whole.

In order to sum up the results, the maximum value of G for all time, Gmax, is reported in Fig. 4 as a function of l2=l2
cr for

the supersonic steady model equipped with various boundary conditions as well as for the subsonic clamped–free model of
Argentina and Mahadevan [6] that will be investigated in the next section. The maximum amplification of energy increases
with increasing l2=l2

cr, the oscillating behavior eventually tending to the exponential growth for l2=l2
cr-1.
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A parallel analysis has been developed in order to directly simulate the dynamics of the panel, whose results are
reported in Figs. 5 and 6 for l2=l2

cr ¼ 0:8 and 0.98, respectively. In both cases the first eigenfunction of the in vacuo case,
with unit amplitude and null initial velocity, has been considered as initial condition. Besides the instantaneous shape of
the plate, Figs. 5(a) and 6(a), the evolution of the total, elastic potential and kinetic energies are monitored, Figs. 5(b) and
6(b), together with the term representing the energy exchange rate, Qe ¼ �

R 1
0 pyt dx, between fluid and solid, Figs. 5(c) and

6(c). All energies are normalized with respect to the initial total value.
The maximum amplitude deformation (thick red line in both Figs. 5(a) and 6(a)) resembles the features of the almost

coincident imaginary parts of the first pair of eigenfunctions. This is due to the fact that non-normality is practically
confined in the subspace spanned by these two modes, hence the contribution to the norm of the solution given by the
components of the initial condition in this subspace is dominant. Such a behavior is increasingly more evident as the
critical condition is approached. Regarding the energy budget, Figs. 5(b) and 6(b) clearly depict that during the oscillatory
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evolution of the total energy (thick line) there is a continuous conversion of kinetic energy (dotted line) into potential
energy (continuous line) and vice versa, due to the high-frequency flapping dynamics of the plate. However, the total
energy oscillates at a lower frequency and envelops the oscillations of potential and kinetic energies. The time evolution of
the energy exchange rate verifies with accuracy the relation Qe ¼ dEtot=dt.

It should be explicitly noted that the initial condition chosen for the numerical simulations is not the optimal one.
However, one may verify that imposing an initial static deformation coinciding with the first in vacuo eigenmode yields an
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energy evolution very close to the optimal one. Howell et al. [18] recently carried out similar direct numerical simulations
(their initially imposed deformation was the second in vacuo eigenmode) and showed apparently analogous cycles of
oscillation of energy for a clamped–free panel in subsonic flow. They deduced that the irreversible energy transfer between
fluid and structure at critical conditions is the cause of the instability. Most importantly, Howell et al. [18] simulations refer
to critical conditions in the presence of flow-induced damping, therefore the total energy evolution shows an oscillatory
plateau, with a frequency coinciding with the flutter one.

In order to better elucidate this issue, we switched on the aerodynamic damping term of Eq. (13) and extended the
considerations of Howell et al. [18] to subcritical conditions in the light of the non-modal theory. The morphology of the
spectrum and the time evolution of the growth function modify, together with some characteristics of the periodic energy
transfer between panel and fluid. Fig. 7(a) shows the path described by the imaginary parts of the first four eigenvalues as l
increases for various values of m. The black line refers to the case of no damping, m ¼ 0, while red and blue lines correspond
to m ¼ 1 and 5, respectively. Fig. 7(b) depicts the same information for the real parts. The unsteady contribution of the
forcing pressure moves the instability onset toward higher values of l and instability emerges not immediately after the
collision of the first pair of eigenvalues. The optimal energy amplification oscillates in time with the same qualitative
features as in the case of steady pressure field. However, the growth function GðtÞ does not increase monotonically to
infinity as l approaches its critical value. On the contrary it reaches a plateau, afterward the panel loses its stability. This
behavior is synthesized in Fig. 7(c) for various values of m, including the no damping case m ¼ 0. The full dot symbols
represent the critical conditions which for the highest m appear out of scale.

With much more detail Fig. 8 depicts the optimal energy amplification for m ¼ 0:5 and various significant values of l=lcr

(now lcrC20:26). Besides the critical condition producing instability, the system exhibits another criticality at l=lcrC0:91
when under stable conditions the first pair of eigenvalues collide. For l=lcro0:91 the structure initially extracts energy
from the fluid but it is able subsequently to release it through the usual low-frequency oscillations, the damping intensity
determining the level of Gmax and producing the asymptotic decay. After the eigenvalue splitting the structure can no
longer balance the pressure forcing, in fact (e.g. l=lcr ¼ 0:95) the low-frequency oscillations disappear (the high-frequency
ones only survive, corresponding to flutter frequency) and stability is guaranteed by the aerodynamic damping effect
dissipating the rate of work done by the fluid. Note that the mean slope of GðtÞ after the peak is negative. It is clearly evident
that at critical conditions the rate of work done by the fluid is exactly dissipated by the damping effect, i.e. dEtot=dt ¼ 0
after the transient period. The typical oscillatory trends found by Howell et al. [18] looks like the case l=lcr ¼ 1.
For l=lcr41 the fluid rate of work is not shut off by dissipative effects and instability emerges.

The variation of Gmax against m is also shown in Fig. 7(d) for various l=lcr. One should note that lcr depends in turn on m.
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4.2. Subsonic flow: high-density flag

The case of thin panel exposed to axial subsonic incompressible flow will be hereafter analyzed with reference to
the simplified model developed by Argentina and Mahadevan [6] in which a quasi-steady approximation is made and the
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pressure field depends on the local deflection slope. This gives rise to flutter instability of coupled-mode type. In the
subsequent section we will consider the potential model of non-circulatory flow of Kornecki et al. [3] in order to study
the non-modal characteristics in the presence of non-local effects. Note that the simple models here considered lead to
exact modal-coalescence instability. On the other hand, it is known that for more complex situations higher-order single-
mode flutter instabilities may emerge, and the application of the non-modal analysis should be checked in future activity.

Following Argentina and Mahadevan [6] we consider here the limiting situation in which the parameter characterizing
the added mass effect is supposed to be small ðm51Þ, while the scaled velocity is assumed to be large ðVb1Þ in such a way
that the control parameter l ¼ V

ffiffiffiffimp remains finite. The physical situation under examination corresponds to a heavy flag in
a fast flow. In this limit the vorticity is advected rapidly from the trailing edge so that one can use a steady approximation.
The equation for the vertical displacement of the plate has the form:

@2y

@t2
¼ �

@4y

@x4
� l2cðxÞ

@y

@x
(14)

where cðxÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞ=x

p
. The boundary conditions here considered are of the type clamped–free, with the clamped end

located at the trailing edge of the plate. The morphology of the spectrum is similar to that described for the panel in
supersonic flow and the system loses stability through coupled-mode flutter. For the assigned clamped–free boundary
conditions, in agreement with Argentina and Mahadevan [6] the critical value is lcrC10:53. Fig. 9, depicting the optimal
energy amplification evolution, is particularly meaningful since, besides confirming all the characteristics already
discussed in Section 4.1, shows clearly the influence of the flapping dynamics of the plate, which is responsible for the
high-frequency oscillations. Such a behavior is exhibited also by the model of the clamped–free plate in supersonic flow
(not shown) and hence it has to be associated to the peculiarity of the boundary conditions and not to the particular
pressure model employed.

The occurrence of the high frequency oscillations is confirmed by the results of the numerical simulation, which are
reported in Fig. 10 for l2=l2

cr ¼ 0:9. Again the simulation has been performed by considering as initial condition the first
eigenfunction of the free oscillating plate in vacuo and the maximum amplitude deformation (red line in Fig. 10(a))
resembles the almost coincident imaginary parts of the first pair of eigenfunctions. The maximum growth of the
normalized energy is as large as 800. All the physical comments previously made for the supersonic panel flutter applies to
the present subsonic model, so that Fig. 10 is self-explaining. The values of Gmax computed for various l2=l2

cr have been
already presented in Fig. 4.

4.3. Non-local subsonic pressure field

The influence of a non-local pressure field relative to an inviscid non-circulatory flow is now approached. We will
refer here to the analytical model of Kornecki et al. [3] equipped with clamped–clamped end conditions. The governing
equation (2) writes accordingly

@2y

@t2
¼ �

@4y

@x4
þ

1

p

Z 1

0
l2 @

2y

@x2
þ 2l

ffiffiffiffimp @2y

@x@t
þ m @

2y

@t2

" #
lnjx� xjdx

( )
� d

@y

@t
(15)

where the terms @2y=@x2, @2y=@x@t, @2y=@t2 represent the centrifugal, Coriolis and translatory accelerations of the fluid,
respectively, and may be seen as effects of flow induced stiffness due to curvature, damping and additional inertia.
The function lnjx� xj acts as a filter accounting for the non-local effects. The singularity of Eq. (15) is integrable and
has been treated by means of a proper numerical procedure involving the ‘‘tanh’’ change of variables (cf. for example
Boyd [23, p. 458]).
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First of all it has to be noticed that with Kornecki’s model the plate typically loses its stability by divergence, for both
clamped–clamped and pinned–pinned ends (the case clamped–free being of flutter-type). The operator is non-normal and
oscillatory growths of energy due to disturbance amplification are computed. We found that the influence of the m
parameter is opposite to that observed for the supersonic model, since the growth peak Gmax increases with increasing m,
as shown in Fig. 11(a). Fig. 11(b) depicts the weak influence of the dimensionless parameter of structural damping d

for m ¼ 1 and 10. The frequency of the oscillations against m is decreasing due again to the added mass effect, as shown in
Fig. 12 for undamped cases and l=lcr ¼ 0:9. Gmax roughly scales like ð2þ mÞ=2, while the period T scales like

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

p
.

Fig. 13 compares some GðtÞ trends for undamped and damped configurations at incipient criticality ðl=lcr ¼ 0:9Þ and at
critical conditions ðl=lcr ¼ 1Þ. Damping of course reduces the energy growth, and Gmax appears bounded at the instability
onset in the presence of damping. Since the instability is achieved by divergence, here the period of global oscillation is
related to the spacing between the (symmetric) imaginary parts of the first complex conjugate pair of eigenvalues.

The outputs of the direct simulations referring to undamped cases for m ¼ 10 are reported in Figs. 14 and 15, the former
when the instability onset is approaching, the latter at criticity, respectively. Since in the divergence case the high-
frequency oscillations of the local transverse displacement disappear, the global oscillations of the energy growth function
correspond directly to the transverse displacement oscillations of the panel. The energy exchanged with the fluid moves
exclusively in potential energy and does not give rise to a continuous flowing of energy between potential and kinetic
(as already observed in the flutter case). Note that in the present case the initial condition is given with a small amount of
kinetic energy. In fact, Figs. 14(b) and 15(b) show that the kinetic energy is practically negligible as compared to the other
energy forms.

Because of the absence of high-frequency oscillations the structure looks like a system without restoring forces since the
structural stiffness is balanced by the aerodynamic stiffness. Here again the non-modal analysis gives a picture for the
divergence onset as an instability which settles in via periodic transfers of energy of the panel from/to the fluid, illustrated
in Figs. 14(c) and 15(c), with a period which becomes infinite at critical conditions.
4.4. Another interpretation of the global energy oscillations

The global oscillations of energy of the optimal amplifications may enclose another interesting reading-key of the
modal-coalescence instabilities analyzed above. The starting point is the consideration that the period of low-frequency
oscillations is strictly linked to the spacing between the imaginary parts of the coupling eigenvalues (typically the first
two). Previous supersonic and subsonic models of pressure field demonstrated that this is a robust common characteristic.
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This occurrence has a very strong analogy with the beats phenomenon verifying in the dynamics of forced damped
mass-spring systems governed by the equation

€x þ d _x þo2
0x ¼ Fsinof t (16)

A typical steady energy evolution exhibits a high-frequency conversion between kinetic and potential energy enveloped by
a low-frequency oscillation of the total energy, which reproduces exactly for instance the trend of Fig. 10(b) for undamped
situation, and those of Fig. 8 for damped situation. The high-frequency is given by the natural pulsation o0 of the oscillator,
while the low-frequency is determined by the difference between the natural and forcing frequencies o0 �of , giving rise
to beats. Note that the frequency of the oscillations of energy is twice that of the displacement variable x because
symmetric displacements have the same content of energy.

A similar behavior is exhibited by the two coupled oscillators of Eq. (7) even in the presence of damping, as shown by
Schmid and de Langre [19]. It is clear that in this model the forcing term of an oscillator is constituted by the oscillating
evolution of the other one. The difference with respect to the externally forced system is that the global frequency of the
enveloping oscillations is here given by the difference between the two natural frequencies, depending on the coupling
parameter a. Indeed, this was already found by Schmid and de Langre [19], although they did not relate the global energy
oscillations to the beats occurrence.

Our differential models of previous sections exhibit a countable set of infinite natural vibration modes coupled to each
other by the flow-induced pressure term. Since the non-normality is practically restricted (at least for the cases here
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analyzed) to the first pair of eigenvalues, one can interpret the global subcritical oscillations of energy as the result of a
resonance between two coupled oscillators (the flow-dependent eigenvalues). Furthermore, in the case of divergence, since
the actual stiffness vanishes, one eigenvalue vanishes as well and the energy resonance frequency is expected to be twice
the second eigenmode, as occurs for the Kornecki’s model.

4.5. The pipe conveying a fluid

In Section 2 it has been observed that Eq. (1) is relevant for a class of problems wider than those strictly related to the
panel flutter/divergence, as it describes, for instance, the small lateral motion of a pipe conveying a fluid. An exhaustive
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review of the investigation methodologies and physical considerations about the problem can be found in Paidöussis [1]
and de Langre et al. [28]. A fluid-conveying pipe represents an occurrence of fluid–structure interaction where the system
loses stability by flutter or divergence in a variety of manners, depending on the imposed boundary conditions. For fixed
pipe ends the system is conservative, whilst the cantilevered case is not conservative due to the influence of flow induced
damping effects.

If gravity, structural damping, externally imposed tension and pressurization effects are neglected, the equation of
motion of the pipe takes the form

ðM þmÞ
@2Y

@t2
¼ �EI

@4Y

@X4
� 2MU

@2Y

@X@t�MU2 @
2Y

@X2
(17)

where M is the mass of fluid per unit length, flowing with a steady velocity U, m is the mass of the pipe per unit length and
EI is the flexural rigidity of the pipe. The term M@2Y=@t2 is an added mass effect, the second spatial derivative term is
associated to centrifugal forces in the fluid (and is usually termed aerodynamic stiffness), and the mixed derivative models
the Coriolis effects (aerodynamic damping). Note that Eq. (17) can be derived from Eq. (1) when the forcing pressure
is modeled as

DP ¼ M
@

@tþ U
@

@X

� �2

Y (18)

which coincides with a classic result of Lighthill [29] presented in a historical note on the slender fish swimming. Thus,
as noted by Triantafyllou [30], Eq. (17) governs the dynamics of both cylinders in axial flow and conveying-fluid pipes.

In this last case the added mass is rA, A being the cross sectional area of the pipe. Eq. (17) can be conveniently put in the
following non-dimensional form

@2y

@t2
þ
@4y

@x4
þ 2

ffiffiffi
b

p
u
@2y

@x@t
þ u2 @

2y

@x2
¼ 0 (19)

where non-dimensional parameters b ¼ M=ðM þmÞ and u ¼ UL
ffiffiffiffiffiffiffiffiffiffiffi
M=EI

p
have already been introduced in Section 2. The

boundary conditions usually considered for this equation are both of fixed type (clamped–clamped or pinned–pinned) and
cantilevered type (clamped–free).

For fixed type boundary conditions the system firstly loses stability via a couple-mode divergence of its first mode at a
critical value ucr, which is independently of b. Values of ucr for the cases of pinned–pinned and clamped–clamped boundary
conditions are ucr ¼ p and ucr ¼ 2p, respectively.
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Our analysis shows that, before divergence instability the system becomes increasingly non-normal as the critical
conditions are approached, although the overall level of non-normality is lower with respect to the previous cases, as
already noted by Schmid and de Langre [19] for their simplified model. The growth function again reveals that the pipe is
able to extract and release energy from the fluid in periodic cycles, in such a way that the energy exchanged in one period is
globally zero (the system is conservative). The critical conditions being of divergence type, the oscillations of the optimal

energy growth correspond exactly to the transverse displacement oscillations of the pipe and exchanged energy moves
exclusively in potential energy, the structural stiffness being balanced by the flow induced stiffness. The instability settles
in through periodic extractions and releases of energy of the pipe from the fluid, the period tending to infinite at critical
conditions. Quantitative results are not presented herein because they are quite similar to the ones discussed for the
Kornecki’s model.

More interesting is the analysis of the cantilevered pipe, which presents a quite different situation. As analyzed in a
great detail by Paidöussis [1], the topology of the spectrum before instability is generally more complex because the system
is damped by the effects of the Coriolis force, which, unlike the case of fixed ends, is able to perform work. A similar
occurrence has been observed for the supersonic panel model when the unsteady term of pressure has been taken into
account within the piston theory approximation.

Fig. 16 depicts the spectrum computed for the typical situation of u=ucr ¼ 0:9 and b ¼ 0:5, the critical value of u being
ucrC9:32. Here the first pair of eigenvalues experiences first two collisions followed by splitting before the third mode
ultimately becomes unstable traversing the real axis. As fully described by Paidöussis [1], other modes can become
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unstable at different values of b and an interesting re-stabilization phenomenon can also occur at higher values of u for
suitable values of b.

As regards non-normal features of the system, the general trend of increasing non-normality degree with increasing the
scaled velocity u (at fixed b) is confirmed. Such a behavior is enhanced by each further collision, although the growth levels
of energy remain in general lower than the ones achieved in the other cases considered before. Selected time trends of the
growth function are reported in Fig. 17 where, after the initial increase, a characteristic decrease and oscillating behavior is
clearly evident, recalling the finding of supersonic cases illustrated in Fig. 8.

The subsequent Fig. 18 shows a map in the plane u2b of the computed values of Gmax. The white region above the
classical S-shaped marginal curve denotes asymptotic instability, whereas below it, where the pipe is asymptotically stable,
significant transient growths of the energy are achieved. While for some fixed b values the eigenvalues analysis predicts
alternating stable/unstable behaviors as the velocity parameter u is increased, the values of Gmax continuously grow within
the asymptotically stable region, except the interval of u where the system is unstable.
5. Final discussion and conclusions

A detailed theoretical study of the dynamics of typical fluid–structure interactions (involving thin plates and pipes
conveying a fluid) in subcritical conditions has been conducted by making use of both typical methodologies of
investigation of the linear non-modal operator theory and direct numerical simulations. To the knowledge of the present
authors this is the first time that non-modal characteristics of the equations modeling phenomena of fluid–structure
interaction are investigated, although we used here simple models of flow-induced pressure fields leading generally to
modal-coalescence instability.

The optimal energy amplifications, here defined global because they refer to the entire structure as a whole, for all the
cases examined exhibit low-frequency temporal oscillations which correspond physically to the continuous extraction/
release of energy from/to the fluid. When any effect of damping is neglected the energy growth peak increases with
increasing the intensity of the interaction, i.e. the scaled flow velocity, and eventually tends to infinity as the critical
condition of instability is approached (resonance). In the presence of damping the global behavior shows similar features
but in subcritical states the evolution of the energy amplification is asymptotically damped and attains a constant plateau
at instability onset. Small-amplitude high-frequency oscillations may be also present, due to the actual (i.e. combined
structural and aerodynamic) stiffness term.

The direct numerical simulations confirm this scenario, although one has to remember that they solve a specific initial
value problem whilst the non-modal approach determines the greatest amplification of energy for all initial perturbations.
It is found that the first static in vacuo eigenmode approximates very closely the optimal initial condition, and the
maximum amplitude deformations are enveloped by the coinciding first and second eigenfunctions when critical
conditions are approached.

We observed that the low-frequency of global oscillations is always related to the spacing of the imaginary parts of the
coupling eigenvalues, which on the other hand represent essentially the non-normal part of the spectrum. This perhaps
surprising finding may suggest that the periodic transfers of energy between fluid and structure along the route to the
instability can be predicted by a simple model of damped forced vibrations, the beating frequency being given by the
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distance between the two non-normal coupling eigenvalues. Peaks of global energy correspond to flow-induced beats.
When the instability occurs by divergence, in particular, the actual stiffness of the structure vanishes and the high-
frequency oscillations disappear; nonetheless the low-frequency oscillations (in this case the energy ones are directly
linked to the transverse displacement ones) persist, the frequency being twice the imaginary part of the second eigenvalue.

It has to be stressed once again that our major findings have been obtained with simple pressure models employed in
order to treat in a feasible way the rather wide cases of fluid–structure studied. The related instability is essentially of
modal-coalescence type. However, we believe that most of the effects discussed in the paper have a strong survival chance
in more complete flow dynamics modeling, at least at high Reynolds numbers, and recommend extending the investigation
by making use of full Navier–Stokes equations. On the other hand, if we observe the problem from the fluid view-point the
interaction flow-structure leads to fluid dynamics fields (e.g. open boundary layer flow or confined channel flow) including
effects of compliant walls. It is already known that for the standard case of rigid boundary the Orr–Sommerfeld operator is
non-normal and an asymptotically stable flow may exhibit large transient growths of energy that are eventually shut off by
viscous effects. Low-frequency oscillations are not present because of the absence of reaction terms (rigid wall and
incompressible flow). When the walls are compliant the reaction terms can produce low-frequency oscillations of fluid
energy, as recently observed by Hœpffner et al. [31]. Of course, the presence or the absence of reaction effect depends on its
relative magnitude with respect to other effects.
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